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INTRODUCTION 

This paper is concerned with steady laminar boundary layer flow of a particle/fluid suspension past 
a semi-infinite fiat plate. The fluid is assumed to be incompressible and the volume fraction of 
particulate material is assumed to be small. Osiptsov (1980) and Prabha & Jain (1980) have reported 
numerical solutions to this problem based on the dusty gas model (e.g. Marble 1970). [Wang & 
Glass (1988) recently reported numerical solutions for a compressible fluid phase.] While the dusty 
gas model is widely used, it is by no means the only plausible representation of small volume 
fraction suspension behavior. It is, therefore, of interest to determine how solutions based on more 
elaborate models compare with those associated with the dusty gas model. In this way information 
can be obtained which is helpful in matching models with observed physical behavior. In the present 
work the title problem is solved employing a model which incorporates ideas similar to those 
discussed by Soo (1967, 1968) and Korjack and various coworkers (e.g. Korjack & Chen 1980). 
This model endows the particulate phase with diffusivity and viscosity (not present in the dusty 
gas model), while retaining the small volume fraction assumption. 

GOVERNING EQUATIONS 

Let the plate occupy the half of the x, z plane corresponding to x > 0 with the y axis being normal 
to the plate. Let u¢, Vc, po and v c denote the fluid phase tangential velocity, normal velocity, density 
and kinematic viscosity, respectively. Let Ud, Vd, Pd, Vd and D O denote the particle phase tangential 
velocity, normal velocity, density, kinematic viscosity and diffusivity, respectively. Let the free 
stream conditions be denoted by u~ and Pd~ and the momentum relaxation time by z. Then, the 
equations which form the basis for the present work can be written as 

c~xuc + C~yVc = O, [la] 

UcaxU~ + voayuo = vod.uo + (pdlpc)(u ,  - uc)lz, [lb] 

a~(pdUd) + dy(PdVd) = DdayyPd, [lc] 

UdOxU d "Jr" OdOyU d : Vd[OyyU d "Jr- 0y(ln pd)~yUd] "Jr- (U c - -  Ud)/T [ l d ]  

and 

UdOxVd + Vd~yVd = Vd{2[OyyVd + ay(ln pd)~yVd] + dxyUd + Ox(ln pd)OyUd } + (Vc -- Vd)/X. [le] 

In writing the above equations the usual boundary layer approximations were employed, external 
body forces were neglected, and, for simplicity, the quantities Pc, vc, Vd, D0 and x were treated as 
constants. The equations employed by Osiptsov (1980) and Prabha & Jain (1980) are recovered 
by equating Dd to zero in [1 c] and Vd to zero in [ld, e]. One (of several)justifications for the inclusion 
of the terms multiplied by these two parameters is that they can be thought of as logical 
consequences of the averaging processes used to develop a continuum model of a system containing 
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discrete elements. Substituting the modified Blasius variables 

x=u~oz~/(1 - ¢ ) ,  

Uc=U®Fo(¢,,7),  

Ud = U~oFd(¢, '7), 

Pd = Pdoo Od(~, r/) 

into [la--e] yields: 

and 

y = [2vcz~/(1 -- ¢)]1/2q, 

G = [v¢(l - ¢)/(2r¢)]'/2[G~(¢, q) + qF~(~, t/)], 

Vd = [Vc(l -- ~)/(2"r~)]'/Z[Gd(¢, rl) "F r/Fd (¢, r/)], 

[2] 

tg, Gc + Fc + 2¢(1 - ¢)t9¢ F~ = 0, [3a] 

QO, Fc + 2~(1 - ¢)FcOcF~ = 0,~Fc + 2tCCQd(Fd -- F~)/(1 -- ¢), [3b] 

Gda, Qd + 2~(1 -- ¢)Fd0¢Qd + [O, Gd + Fd + 2¢(1 -- ¢)3~Fd]Qd = 60,,Qd, [3C] 

Gdd, Fd + 2¢(1 -- ~)Fd0~Fd = fl[3,,Fd + 3,( lnad)d,  Fd] + 2¢(F~ -- Fd)/(1 -- ~), [3d] 

G,tOnGd + 2¢(1 - ~)Fd0~ Gd -- qF 2 = 3 {2[0,, Gd + 3,(lnQd)a, Gd] + 3t3, Fd 

+ O,(lnQd)F d + 2¢(1 - ¢)[3~,Fd + t~(lnQd)t:3qFd]} -1- 2¢(G~ -- Gd)/(1 -- ~). [3e] 

In [3a-e], 

= Vd/V c, 6 = Dd/Vc, X = pd~/p~ [4] 

are the viscosity ratio, the inverse Schmidt number and the free stream particle loading, 
respectively. The boundary  conditions employed were: 

Fc(¢,t /)-~l ,  Fd(¢,q)--~l, Qd(¢ , r / )~ l  as r /~oc ,  [5a] 

Gd(¢,r/)--*Gc(¢,r/) as q--+m, [5b] 

F~ (¢, 0) = 0, Gc (~, 0) = 0 [5c1 

and 

Fd(~, 0) = O9[(1 -- ¢)/(2~)]'/2t3,Fd(¢, 0), Gd(¢, 0) = 0, 3,Qd(¢, 0) = 0, [5d] 

where co is a particle phase slip parameter. 
In reality the particle phase tangential velocity at the wall is controlled by a variety of  physical 

effects such as sliding friction, the nature of  particle/surface collisions etc. It is not  possible to model 
such effects with precision at present. It was, however, desired to provide enough generality in the 
equations to allow for a wide variety of  particle phase wall tangential velocity profiles. This was 
accomplished by allowing the slip coefficient 09 to depend on the particulate wall relative velocity 
Fd(¢, 0). Tentatively a function of  the form 

co = co0{Fd(¢, 0)/[1 -- Fd(¢, 0)1}" [6] 

was employed in which COo and n were treated as constants. According to [6], co = Go at ~ = 0 
[Fd(0, 0) = 1], where perfect slip should exist, and co = 0 at ¢ = 1 [Fd(1, 0) = 0], where no slip should 
exist. 

R E S U L T S  A N D  D I S C U S S I O N  

Equations [3a-e] were solved, subject to [5a-d], by a standard implicit finite difference method 
for boundary  layer equations modified for application to two-phase flows. Some typical particle 
phase density profiles are shown in figures 1 and 2. Both Osiptsov (1980) and Prabha & Jain (1980) 
report (based on the dusty gas model) that  the particle phase density becomes infinite at ¢ = 0.5; 
i.e. at one relaxation length from the leading edge. This singularity is associated with the existence 
of  a particle phase stagnation point at ¢ = 0.5. In contrast to this, it can be seen that the present 
model predicts a singularity-free solution throughout  the flowfield as long as diffusivity is included 
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in the model. As the inverse Schmidt number fi is decreased larger and larger peaks are observed 
in the particle phase density profiles. The locations of these peaks depend on the slip parameters 
co o and n (because these influence the particle phase wall slip distribution). Although the 
corresponding results are not presented graphically, it is of interest that other parameters (skin 
friction, displacement thickness etc.) were affected hardly at all by the changes in fi indicated in 
figures 1 and 2. 

CONCLUSION 

It was shown that solutions for steady laminar boundary layer flow of a particle/fluid suspension 
past a flat plate based on a model including particle phase viscous and diffusive effects do not 
exhibit the singular behavior associated with the dusty gas model. Because of this singular behavior, 
dusty gas predictions are not self-consistent (the small volume fraction assumption being violated). 
The self-consistent nature of the predictions of the present model suggests that models of this 
general type should receive more attention in the future. 
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